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Abstract

Three-point bending tests are conducted on millimetre-scale tourmaline and epidote samples at room temperature and pressure to determine

fracture strengths suitable for use with the microboudin method of palaeostress analysis. The fracture strength of the samples is obtained from the

Weibull scale and shape parameters using a size-effect model. Three different size-effect models are evaluated and it is found that the effective-

length model is the most appropriate for describing the fracture strength of tourmaline and epidote based on geological constraints. The

palaeodifferential stresses determined by this method for samples from Wadi Tayin (Sultanate of Oman), Greenbushes (Australia) and four high-

pressure metamorphic belts in Japan are in the range of 10–300 MPa.

q 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Differential stress drives rock deformation and is a key

factor in mountain building and plate tectonics. Stress analysis

is thus a central theme in structural geology (e.g. Hobbs et al.,

1976). Three metallurgical methods of stress analysis using

grain size, subgrain size and dislocation density were

introduced in the 1970s and later applied to monomineralic

metamorphic tectonites to estimate the magnitude of palaeo-

differential stress during plastic deformation within orogenic

belts (e.g. Mercier et al., 1977; Twiss, 1977; Weathers et al.,

1979; Etheridge and Wilkie, 1981; Ord and Christie, 1984).

However, these metallurgical methods involve substantial

uncertainty due to the requirement of an assumption of

steady-state deformation, which is unlikely in orogenic

processes (e.g. White et al., 1980; Passchier and Trouw,

2005). The calcite twin and microboudin methods have

subsequently been proposed for palaeostress analysis based

on the observation of microstructures in deformed rocks (e.g.

Jamison and Spang, 1976; Masuda et al., 1989; Rowe and

Rutter, 1990; Lacombe, 2001). The calcite twin method is
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applied to marbles and calcite veins, whereas the microboudin

method is applied to quartzose metamorphic tectonites. Both

methods are considered to be more suitable than the first

metallurgy-based methods as both consider non-steady state

deformation.

The microboudin method for palaeostress analysis was

proposed by Masuda et al. in 1989 and has been subsequently

refined by a number of revisions (Masuda et al., 1990, 2003,

2004a). The method has been successfully applied to

microboudinage of columnar minerals such as piemontite,

tourmaline and sodic amphibole grains embedded within a

quartz matrix in metamorphic tectonites (e.g. Masuda et al.,

2003, 2004a,b). The relation determined by the microboudin

method is given in terms of a dimensionless stress parameter l,

which is defined as

lZ
s0

S*
(1)

where s0 is the far-field differential stress and S* is the modal

extension-fracture strength of columnar mineral grains with

unit aspect ratio (see Appendix A for determination of l by the

microboudin method). Thus, if S* is provided, the microboudin

method can give the absolute magnitude of s0. However, as

direct measurement of S* for micrometre-scale columnar

minerals at metamorphic temperatures and pressures is

technically difficult, it remains necessary to determine S* by

alternative means. In this study, three-point bending tests are
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Nomenclature

l dimensionless stress parameter

s0 far-field differential stress

S* modal extension-fracture strength of columnar

minerals (general)

P measured load at failure

l, b and h span distance (mm), breadth (mm) and height

(mm) of specimen

m Weibull shape parameter (Weibull modulus)

b3, bt Weibull scale parameter for three-point bending

test and tensile test, respectively

St modal fracture strength with the size of (l mm,

b mm, b mm)

S*
b , S*

w modal fracture strength for cubes with dimensions b

(mm) and w (mm), respectively

V3, Vt effective volume for three-point bending test and

tensile test, respectively

A3, At effective area for three-point bending test and

tensile test, respectively

L3, Lt effective length for three-point bending test and

tensile test, respectively
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conducted on millimetre-scale tourmaline and epidote at room

temperature and pressure and S* for these minerals is deduced

by considering the size effect of fracture strength. Using the

values of S* thus determined and assuming no influence of

temperature and pressure on S*, the magnitude of s0 is

tentatively estimated for metacherts from various parts of

Japan and the Sultanate of Oman and also for a pegmatite from

Australia.

2. Three-point bending tests

The three-point bending test (e.g. Davidge, 1979; Awaji,

2001) is the most practical method for determining the fracture

strength of columnar minerals due mainly to the simplicity of

sample preparation compared with that for other mechanical

tests such as the Brazilian test or even the simple tensile test.

2.1. Materials

Of the microboudinaged minerals available in sample rocks,

tourmaline and epidote were chosen for testing as the only

minerals with crystals of sufficient size for treatment. Tourma-

line samples collected from Stak Nala, Gilgit, Pakistan and

epidote samples from Warsar, Peshawar, Pakistan were

selected for analysis. A total of 13 tourmaline test pieces

(span distance, 3 mm; breadth, 1 mm; height, 1 mm) and 10

epidote test pieces (8 mm, 2 mm, 2 mm) were prepared
Fig. 1. Photographs of specimens for three-point bending tests. Tur.Ztourmaline

tourmaline and epidote.
(Fig. 1). The longitudinal side of the test piece was cut parallel

to the crystallographic c axis and the test surfaces were

carefully polished with diamond paste to remove minute cracks

introduced by saw-cut processes.

2.2. Method

The three-point bending test was performed at room

temperature and pressure using an Autograph (Shimadzu,

Japan) at the Nagoya Institute of Technology. The crosshead

speed for this test was set at 0.5 mm/min. The flexural strength,

s, is calculated by

s Z
3Pl

2bh2
(2)

where P is the measured load at failure and l, b and h are the

span distance, breadth and height of the rectangular prism-

shaped test pieces, as shown in Fig. 2 (e.g. Davidge, 1979,

p. 16).

2.3. Experimental results

Fig. 3 shows Weibull plots of the fracture strengths of

tourmaline and epidote obtained in the tests. The strength data

vary widely, from 22.2 to 165.9 MPa for tourmaline and

from 39.6 to 198.9 MPa for epidote. Representative values of

strength are determined by statistical analysis using the
. Ep.Zepidote. (a) Bare blocks of tourmaline and epidote. (b) Test pieces of



Fig. 2. Schematic illustration of specimen for three-point bending tests.
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well-established Weibull theory (e.g. Epstein, 1948; Weibull,

1951). The cumulative distribution function of Weibull theory

is given by

FðsÞZ 1Kexp K
s

b3

� �m� �
(3)

where s is the strength of failure, m is the shape parameter

(Weibull modulus) and b3 is the scale parameter for three-point

bending tests. Here, m and b3 are representative values called

the Weibull parameters: m is a material constant representing

the scatter of fracture strength and b3 is a reference value

analogous to a mean or median value of strength dependent on

material size. The Weibull parameters determined from the

present data by linear regression (e.g. Davidge, 1979, p. 136)

are coincidently the same for both tourmaline and epidote:

mZ2 and b3Z110 MPa. The numbers of the significant figure

are judged to be 1 for m and 2 for b3 from the data for both

tourmaline and epidote shown in Fig. 3. The data do not fit

well to a straight-line fitting, which is not rare for ceramics with

m!5 (e.g. Atkinson et al., 2002).
3. Derivation of modal extension-fracture strength S* from
the scale parameter b3

It should be noted that the value of b3 obtained above is not

equivalent to S* in Eq. (1). Here, new parameters bt, St and S*
b

are introduced to derive S* from b3 in four steps (Fig. 4), where

bt is the Weibull scale parameter for tensile tests, St is the

modal fracture strength for an identically sized grain and S*
b is

that for cubic mineral grains of dimension b (mm). In all steps,
Fig. 3. Weibull plot of fracture strength for tourmaline and epidote. Solid

circles denote strength data. The vertical axis is determined by the median lank

method (e.g. Davidge, 1979, p.136). N is the number of test pieces.
the size and shape effects of fracture strength are considered in

the calculation.

Three size-effect models for fracturing (effective volume,

effective area and effective length) have been formulated based

on the Weibull theory and the appropriate use of each depends

on the site of critical imperfections for fracturing in the

specimen. Specifically, the effective-volume model is appli-

cable to cases in which the effective imperfections for

fracturing are distributed in the bulk, while the effective-area

model is to be adopted when effective imperfections occur on

the surface of the test piece (e.g. Davidge, 1979, p. 138; Awaji,

2001). The effective-length model is used when the effective

imperfections are distributed on the longitudinal edges of the

test piece (Matsuo et al., 1984). As it is not known which model

is best suited for the fracturing of tourmaline and epidote, these

three models are evaluated in detail below. Treatment of the

size effect for fracture strength commences with calculations of

the effective volume, area and length for the test pieces

(Appendix B).
3.1. Step 1: from b3 to bt (Fig. 4a)

The Weibull scale parameter for the three-point bending test

(b3) differs from that for the simple tensile test (bt) even for test

pieces of identical size because the stress distribution in the test

piece is not equivalent in the two tests. Assuming the effective-

volume model, the relationship between two strengths, S1 and

S2, determined by the two test modes and the effective

volumes, V1 and V2, for each mode is given by

s1

s2

Z
V2

V1

� �1=m

(4)

where m is the Weibull modulus (e.g., Davidge, 1979, p. 139;

Awaji, 2001). Thus, the relationship between b3 and bt is

expressed by

bt

b3

Z
V3

Vt

� �1=m

(5)

where V3 and Vt are the effective volumes for the three-point

bending test and the tensile test, respectively (e.g. Davidge,

1979, p. 138; Awaji, 2001). V3 and Vt appear in Eqs. (45) and

(48) (see Appendix B). Substituting these equations into Eq. (5)

gives

bt

b3

Z
1

2 mC1ð Þ2

� �1=m

(6)

bt is then given by

bt Z
1

2 mC1ð Þ2

� �1=m

b3 (7)

Similarly, the effective-area and effective-length models

assume

bt

b3

Z
A3

At

� �1=m

(8)



Fig. 4. Schematic illustration of four steps for derivation of S*
w from b3. (a) Step 1: from b3 to bt. (b) Step 2: from bt to St. (c) Step 3: from St to S*

b . (d) Step 4: from

S*
b to S*

w.
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and

bt

b3

Z
L3

Lt

� �1=m

(9)

where A3 and At are the effective areas and L3 and Lt are the

effective lengths for the three-point bending test and the tensile

test, respectively (e.g. Sutherland et al., 1999; Awaji, 2001).

The following common expression can then be derived by

substituting Eqs. (46) and (49) and Eqs. (47) and (50)

(Appendix B) into Eqs. (8) and (9), respectively:

bt Z
1

4 mC1ð Þ

� �1=m

b3 (10)

3.2. Step 2: from bt to St (Fig. 4b)

The relationship between the Weibull scale parameter for

the tensile test (bt) and the modal tensile fracture strength (St)

for a specimen of a given size is as follows. The probability

density function of the Weibull theory (e.g. Epstein, 1948;

Weibull, 1951) is given by

f ðsÞZ
m

bt

s

bt

� �mK1

exp K
s

bt

� �m� �
(11)

St satisfies the relation

df ðsÞ

ds
Z 0 (12)

Finally, Eq. (12) gives St as follows

St Z bt

mK1

m

� �1=m

(13)
3.3. Step 3: from St to S*
b (Fig. 4c)

S*
b is defined as the modal fracture strength of a cube with

dimension b (mm). From Eq. (4), the relationship between St

and S*
b for the effective-volume model is given by

S*
b

St

Z
Vt

Vb

� �1=m

Z
l!b!b

b!b!b

� �1=m

(14)

where Vt and Vb are the effective volume for the tensile strength

St and S*
b , respectively. In this case, Vt is shown in Eq. (48) and

Vb corresponds to Eq. (48) with lZb. The expressions obtained

for the effective-area and effective-length models are

S*
b

St

Z
At

Ab

� �1=m

Z
4!l!b

4!b!b

� �1=m

(15)

and

S*
b

St

Z
Lt

Lb

� �1=m

Z
4!l

4!b

� �1=m

(16)

where At and Ab are the effective area and Lt and Lb are the

effective length corresponding to the tensile strength St and S*
b ,

respectively. In this case, At and Lt are shown in Eqs. (49) and

(50) and Ab and Lb correspond to Eqs. (49) and (50) with lZb,

respectively. Thus, all three models give the same expression:

S*
b Z St!r1=m (17)

where r is the aspect ratio given by l/b.

3.4. Step 4: from S*
b to S*

w (Fig. 4d)

S* is the modal tensile-fracture strength of a cube and that

for cubes of dimension b or w (mm) are designated S*
b or S*

w.
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The relationships between S*
b and S*

w are expressed as

S*
w

S*
b

Z
Vb

Vw

� �1=m

(18)

S*
w

S*
b

Z
Ab

Aw

� �1=m

(19)

and

S*
w

S*
b

Z
Lb

Lw

� �1=m

(20)

for the effective-volume, effective-area and effective-length

models, respectively. Vw is the effective volume, Aw is the

effective area and Lw is the effective length corresponding to

the tensile strength S*
w. In this case, Vw corresponds to Eq. (48)

with bZlZw. Thus, VwZw3. Similarly, AwZ4w2 are obtained

from Eq. (49) and LwZ4w are obtained from Eq. (50). Eqs.

(18)–(20) can thus be rewritten as

S*
w

S*
b

Z
b3

w3

� �1=m

(21)

S*
w

S*
b

Z
b2

w2

� �1=m

(22)

and

S*
w

S*
b

Z
b

w

� �1=m

(23)

where b is the breadth of the test piece in the three-point

bending test and w is the width of the fibre that forms the

microboudinage structure. As can be seen from the behaviour

of S*
b and S*

w, the value of S* in Eq. (1) changes according to the

size of the microboudin.

3.5. Summary of derivation

The final equations for S*, expressed as a function of wðS*
wÞ

for the effective-volume, effective-area and effective-length

models, are

S*
w Z b3

b3

w3

� �1=m

r1=m mK1

m

� �1=m 1

2 mC1ð Þ2

� �1=m

(24)
Table 1

The obtained values of far-field differential stress (s0) and other essential data for

Sample Mineral Mean width

(mm)

l Far-field differential

Effective-length

(MPa)

E

(

Wadi Tayin Tur. 0.019 0.42 120

Greenbushes Tur. 5.2 0.68 12

Nuporomaporo Pi. 0.029 0.77 290 2

Yamagami Pi. 0.019 0.51 240 2

Matsunosako Pi. 0.057 0.32 86

Asemi Pi. 0.036 0.14 47
S*
w Z b3

b2

w2

� �1=m

r1=m mK1

m

� �1=m 1

4 mC1ð Þ

� �1=m

(25)

and

S*
w Z b3

b

w

� �1=m

r1=m mK1

m

� �1=m 1

4 mC1ð Þ

� �1=m

(26)

where bZ1 mm, rZ3, mZ2 and b3Z110 MPa for tourmaline

and bZ2 mm, rZ4, mZ2 and b3Z110 MPa for epidote.

These equations can be rewritten in the following form:

S*
w Z 32!

1

w3

� �1=2

(27)

S*
w Z 39!

1

w2

� �1=2

(28)

S*
w Z 39!

1

w

� �1=2

(29)

for tourmaline and

S*
w Z 100!

1

w3

� �1=2

(30)

S*
w Z 90!

1

w2

� �1=2

(31)

S*
w Z 64!

1

w

� �1=2

(32)

for epidote.
4. Estimation of far-field differential stress s0

from microboudinage structures

The above results (Eqs. (27)–(32)) are applied to tourmaline

microboudinage structures embedded within quartzose

matrices from the Wadi Tayin (Oman) and Greenbushes

(Australia) samples and to piemontite (Mn-rich epidote) from

four high P–T metamorphic rocks from Japan (Table 1). The

Greenbushes sample is a pegmatite, while the other samples are

metacherts. These six samples are the same as those analysed
each sample.

stress (s0) Tectonic setting Pressure at

TZ300 8C

(MPa)

ffective-surface

MPa)

Effective-volume

(MPa)

860 5100 Metamorphic sole 200–400

5.1 1.8 Pegmatite 350–500

400 16000 High P region ca. 300

400 20000 High P region ca. 300

510 2400 High P region ca. 300

350 2000 High P region ca. 300
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by Masuda et al. (1989, 2003), where the geological settings

have been summarised.

As S* in Eq. (1) is replaced by S*
w, the far-field differential

stress (s0) can be calculated by

s0 Z lS*
w (33)
4.1. Dimensionless stress parameter l

The determination of l is performed by employing

experimentally determined mZ2 for both piemontite and

tourmaline. The method for obtaining l is outlined briefly in

Appendix A. The results are shown in Fig. 5 and Table 1. The

values of l obtained in this study for piemontite are the

same as those obtained in previous analyses of piemontite

microboudins, which were also performed using mZ2

(Masuda et al., 2003). However, as the previous determination

for tourmaline was performed with mZ4, the present values

differ slightly.
4.2. Modal extension-fracture strength S*
w

As the fracturing to form microboudinaged grains occurred

at high pressure and temperature, the influence of these

conditions on S*
w should be critical. However, for the sake of

simplicity, the influences of these conditions are initially

assumed to be negligible and will be discussed later.

The size effect is critical in the estimation of S*
w, which is

ignored in the previous microboudin analysis of Masuda et al.

(e.g. Masuda et al., 2003, 2004a,b). The grain size of

piemontite and tourmaline varies from grain to grain. As the

grain-size distributions of all the analysed samples are log-

normal (Fig. 6), the geometric mean grain size ( �w) is used for
Fig. 5. Results of the microboudin method for the present samples. Solid and

open circles denote reliable and unreliable data (O25 measured grains are

regarded as reliable). The curve represents the best-fit G(r,l) using reliable

data. The obtained values of l for each sample are indicated.
the analysis (Table 1). The S*
w values are properly calculated

using Eqs. (27)–(32).
4.3. Far-field differential stress s0

The magnitude of s0 is calculated separately using Eq. (33)

through substitution of l and S*
w for the three size-effect models

and for tourmaline and epitode. Table 1 summarises the

tentative values of s0 obtained for the six samples. Note that

the s0 values of the Greenbushes samples under the effective-

volume model are smaller than those for the effective surface

and length models, attributable to the large mean grain size of

tourmaline (O1 mm).
5. Evaluation of size-effect models based on geological

constraints

In the list of obtained palaeodifferential stresses in Table 1,

extraordinarily large estimates such as 20000 and 16000 MPa

are seen, which are of course impossible conditions in nature.

To evaluate these inappropriate estimates and eliminate

unsuitable size-effect models for the analysis of tourmaline

and epidote, the level of differential stress in orogenic belts is

considered as a geological constraint. Existing differential-

stress estimates are also briefly reviewed as a rough guide for

the evaluation.
Fig. 6. Frequency distribution of grain width on a logarithmic scale. The

geometric mean width ( �w) is indicated.
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5.1. Ultimate value of far-field differential stress s0

The metamorphic pressure (p) and far-field differential

stress are related as follows:

p Z
1

3
s1 Cs2 Cs3

� �
(34)

s0 Z s1Ks3 (35)

where, s1, s2 and s3 are the principal stresses (s1Rs2Rs3).

From these equations, the following expression can be easily

derived:

3p Z s0 Cs2 C2s3 (36)

As s2O0 and s3O0 are satisfied, it follows that

3pOs0 (37)

This represents the ultimate limit of s0 that can be generated

in the crust.

Microboudinage in metamorphic tectonites occurs during

retrograde metamorphism and the microboudinage structures

are frozen at 250–300 8C, corresponding to the plastic–brittle

transition temperature of matrix quartz (e.g. Masuda et al.,

2004b). As petrological studies have shown that the pressures

at 250–300 8C for these six samples fall in the range of 200–

500 MPa (e.g. Otsuki and Banno, 1990; Partington, 1990;

Maruyama et al., 1996; Hacker and Gnos, 1997), Eq. (37)

indicates that s0 must be lower than 1500 MPa.
5.2. Estimates of differential stress

There are many estimates of differential stress, deviatoric

stress and shear stress. Etheridge (1983) concluded, based on

occurrences of tensile fracturing of metamorphic rocks, that

differential stress intensities during crustal orogenesis would be

less than 40 MPa. Hacker (1991) implied in his thermo-

mechanical studies of the Oman ophiolite that deformation

within the metamorphic sole should have occurred at

maximum shear stresses of w100 MPa, which is similar to

the shear stresses estimated by Molnar and England (1990) for

thrusting along the Main Central Thrust in the Himalayas.

Turcotte and Schubert (2002), based on force balance for the

continental block, gives values of deviatoric stress of the order

of 10–100 MPa. Sandiford et al. (1995) argued, on torque

balance in the Himalayan range, that the differential stress in

that region is 45–70 MPa. Profiles of rock strength with respect

to depth in the lithosphere based on the mechanical and

rheological properties of rocks provide an upper limit for

differential stress of 100–1000 MPa depending on the

geothermal gradient (e.g. Twiss and Moores, 1992). Many

other estimates of differential stress (e.g. metallurgy-based

palaeopiezometric studies, calcite-twin studies, in-situ stress

measurements, earthquake focal mechanisms, finite element

techniques) appear to fall within the order of 10–100 MPa (e.g.

Hanks and Raleigh, 1980; Research Group of Heidelberg

Academy of Sciences and Humanities, 2004).
5.3. Evaluation of size-effect models

Table 1 summarises the differential stress determined by the

three size-effect models for each sample. Assuming that the

size-effect model is not dependent on the mineral species or

sample area, the effective-volume and effective-area models

yield values for s0 that far exceed the geological constraints

cited above and are thus unlikely to be applicable for

tourmaline and epidote. The effective-length model, however,

affords acceptable values of differential stress for all samples.

Consequently, the values of s0 determined by the microboudin

method are 120 MPa for the Wadi Tayin (Sultanate of Oman)

sample, 12 MPa for the Greenbushes (Australia) sample,

290 MPa for the Nuporomaporo (Northern Japan) sample,

240 MPa for the Yamagami (Northeast Japan) sample, 86 MPa

for the Matsunosako (Southern Japan) sample and 47 MPa for

the Asemi (Southwest Japan) sample.

6. Discussion

The derived values of S*
w for tourmaline and epidote are

essentially only valid at room temperature and pressure. As

microboudinage in metamorphic tectonites occurs at much

higher temperature and pressure, the influence of pressure–

temperature variations on S*
w should be evaluated. Residence

time should also be considered, as longer periods under high

pressure–temperature conditions can promote the degradation

of fracture strength. This has been observed directly for

ceramics (e.g. Davidge, 1979; Lawn, 1993). Although the

influence of these factors on fracture strength has been studied

with respect to polycrystalline rocks such as granite, marble

and gabbro, no such attempt has been made for single crystals.

Here, the effects of temperature, pressure and time on the

fracture strength of tourmaline and epidote are evaluated with

reference to previous studies on polycrystalline rocks.

6.1. Temperature

The dependence of the fracture strength of polycrystalline

rocks on temperature is considered to be small up to 600 8C

(e.g. Davidge, 1979, p. 17; Shimada, 1993; Lenz et al., 2002;

Rocchi et al., 2004; Paterson and Wong, 2005, p. 28). Ceramics

are generally considered to be heat-resistant materials,

maintaining strength to temperatures as high as 600 8C (e.g.

Sowden et al., 1974; Quispe-Cancapa et al., 2005; Eskner and

Sandström, in press). As tourmaline and epidote are silicate

minerals and can be considered a type of ceramic, the fracture

strength of tourmaline and epidote are considered to exhibit

negligible dependence on temperature, although there is a lack

of such data to confirm this consideration.

6.2. Pressure

Experiments on polycrystalline rocks have revealed that the

fracture strength increases with confining pressure (e.g.

Paterson, 1958; Byerlee, 1967, 1968; Rosengren and Jaeger,

1968; Mogi, 1974; Paterson and Wong, 2005, pp. 24–25). For
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example, the fracture strengths of granite and gabbro (e.g.

Paterson, 1958; Byerlee, 1967; Kranz, 1980; Shimada, 1981,

1993) differ by factors of 1.5 and 2 between confining pressures

of 200 and 500 MPa, corresponding to the metamorphic

pressure range of the present samples. However, the

dependence of strength on pressure has been suggested to be

due mainly to the effect of cracks along grain boundaries or

joints (e.g. Mogi, 1974; Kranz, 1980; Zoback et al., 2003). As

single-crystalline materials such as the tourmaline and epidote

samples examined in this study have no grain boundaries or

joints, it is considered that the fracture strength of the present

samples will vary only marginally with pressure.
6.3. Time

Time is the most difficult parameter to consider with respect

to the fracture strength of crystalline minerals because the

geological timescale for microboudinage is so much longer

than the timescale for the bending test (a few minutes for

failure in the present study). It is known that materials undergo

time-dependent crack growth at stresses much less than their

critical stress and slow crack growth gives rise to static fatigue

through chemical reaction between the solid phase and

corrosive fluid phases at the crack tip (e.g. Atkinson, 1987;

Lawn, 1993; Paterson and Wong, 2005). For instance, Wilkins

(1980) experimentally measured time to failure under

subcritical stresses for a granite and revealed that average

crack-growth velocities are as low as 10K12 m/s. Lankford

(1987, 1989) quantitatively links the fracture strength of

ceramics with the applied strain rate and explains his

observations in terms of sub-critical crack growth by the

mechanism of stress corrosion. Others have also demonstrated

this type of time-dependent failure strength for ceramics and

polycrystalline rocks: most fracture at 40–80% of the critical

stress when loaded for longer than 105 s (e.g. Baker and

Preston, 1946; Anderson and Grew, 1977; Lajtai et al., 1987;

Gong and Du, 2000; Takahashi et al., 2005). As the

degradation of strength with time is typical for oxide ceramics

(e.g. Davidge, 1979, p. 139; Lawn, 1993, p. 123; Awaji, 2001,

p. 71), it is considered that tourmaline and epidote will undergo

a similar process.
6.4. Effect of temperature, pressure and time on modal

extension-fracture strength S*
w

Higher confining pressure tends to increase the absolute

value of S*
w, while increasing residence time tends to reduce S*

w.

The true value of S*
w under metamorphic conditions will thus be

influenced by both effects and is likely to differ from that

determined by the three-point bending test at room temperature

and pressure. However, the difference is considered to be less

than an order of magnitude and the listed s0 values are

probably acceptable as a first approximation. More realistic

estimations of s0 in the future will depend on realistic revision

of S*
w to account for geological conditions.
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Appendix A. Determination of dimensionless stress

parameter l

The microboudin method consists of two parts: measure-

ment of the proportion of boudinaged grains with respect to

aspect ratio (M(r)), and theoretical prediction of the proportion

as a function of the far-field differential stress (s0). M(r) is

determined by intensive measurement of the length and width

of boudinaged and intact fibre grains with the help of strain

reversal method by Ferguson (1981).

The theoretical prediction is derived from the shear-lag

model for stress transfer from the matrix to the fibre (e.g. Zhao

and Ji, 1997), the weakest-link theory of fracturing (e.g.

Weibull, 1951) and the Weibull distribution of fracture strength

(e.g. Epstein, 1948). The proportion is given by G(r,l), which

is a function of the aspect ratio (r), the Weibull modulus (m)

and the dimensionless stress parameter (l), as follows.

Gðr; lÞZ

1Kexp K
mK1

m
rlm Ef

Eq

� �m

1K 1K
Eq

Ef

� �
1

coshðArÞ

� �m� �

(38)

where Ef and Eq are the elastic constants of the fibre and matrix

and A0 is a constant (for details on derivation of these

equations, see Masuda et al. (1989, 2003)). The constants Ef/Eq

and A0 for tourmaline fibre and quartz matrix are 2.0 and 0.4

and for piemontite fibre and quartz matrix are 1.5 and 0.5,

respectively. The data book by Simmons and Wang (1971) was

consulted to obtain these values.

Comparison between M(r) and G(r,l) is the focus of the

microboudin method. The value of l is determined so as to

minimise the square difference, T(l), which is defined by

TðlÞZ
X

r

Gðr; lÞKMðrÞ½ �2 (39)
Appendix B. Effective volume, area and length

The effective volume (Ve), effective area (Ae) and effective

length (Le) can be calculated by

Ve Z

ð
V

s

sm

� �m

dV (40)
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Ae Z

ð
A

s

sm

� �m

dA (41)

and

Le Z

ð
L

s

sm

� �m

dL (42)

where s is the stress at a specific point in the test piece and sm is

the maximum tensile stress applied to the test piece (e.g.

Davidge, 1979; Matsuo et al., 1984; Sutherland et al., 1999;

Awaji, 2001). Tensile stress is taken as positive only in

Appendix B. The values of s and sm for the three-point bending

test are given as

s Z
6Pxy

bh3
(43)

and

sm Z
3Pl

2bh2
(44)

where x and y are the Cartesian coordinates, P is the load at

failure, b is the breadth, h is the height and l is the span distance

(Fig. 2). In this case, hZb. The effective volume, area and

length for the three-point bending test (V3, A3 and L3) are

calculated by substitution of Eqs. (43) and (44) into Eqs.

(40)–(42), as follows.

V3 Z

ðb

0

ðh2
0

ðl

0

s

sm

� �m

dxdydz Z 2b

ðh2
0

ðl2
0

4xy

lh

� �m

dxdy

Z
lbh

2 mC1ð Þ2
Z

lb2

2 mC1ð Þ2
(45)

A3 Z

ðb

0

ðl

0

s

sm

� �m

dxdz Z 2b

ðl2
0

2x

l

� �m

dx Z
lb

mC1ð Þ
(46)

L3 Z

ðl

0

s

sm

� �m

dx Z 2

ðl2
0

2x

l

� �m

dx Z
l

mC1ð Þ
(47)

The effective volume, area and length for the simple tensile

test (Vt, At and Lt) are given below as equivalent to the volume,

area and length of the test piece considering the uniformity of

the stress distribution (i.e. smZs).

Vt Z lb2 (48)

At Z 4lb (49)

Lt Z 4l (50)
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